博客
关于我
算法——172、阶乘后的零(力扣)
阅读量:639 次
发布时间:2019-03-14

本文共 1224 字,大约阅读时间需要 4 分钟。

good代码是很重要的,特别是在编写代码时要非常小心,避免任何可能导致代码失败的错误。在这段代码中,你将逐次将数字从n递减到1,并将这些数字相乘,记录中间过程中的多余零的数量。

class Solution {public:    int trailingZeroes(int n) {        int sum = 1, target = 0;        while (n >= 1) {            sum *= n;            --n;            while (sum % 10 == 0) {                sum /= 10;                ++target;            }            sum %= 10000;        }        return target;    }};

这段代码通过在每个步骤中计算中间结果,并不断将末尾的零去掉,最终保留了最后的结果。这显示了如何在递减过程中分解问题,虽然这种方法在计算阶乘的末尾零时比较繁琐,但是它确实能达到预期的目标。

阶乘末尾零的普遍方法

为了更有效地计算阶乘末尾零的数量,可以利用因数分解的方法。这个方法的核心思想是计算数中包含5的因子数目,因为每对2和5都会在阶乘的结果中生成一个零。通过统计5的因子数量,我们可以根据这个数目来确定末尾有多少个零。

代码解释

public:    int trailingZeroes(int n) {        int sum = 0;        for (int i = 1; i <= n; ++i) {            if (i % 5 == 0) {                int j = i;                do {                    ++sum;                    j /= 5;                } while (j % 5 == 0);            }        }        return sum;    }};

这个代码通过遍历从1到n的每个数字,检查是否能被5整除。如果能,它就不断地除以5,直到它不再能被5整除为止。每一次除以5的过程都会增加计数器sum,从而记录下该数的5因子的数量。通过统计所有数字中包含5因子的数目,我们可以确定阶乘的末尾有多少个零。

请注意,这种方法是唯一的优化方法,因为它避免了在计算过程中处理过大的数,直接转移了计算焦点,确保了算法的高效性。这种方法不仅简化了问题,而且提升了性能,在计算n很大的情况下特别有效。

通过这两种不同的方法,你可以根据具体需求来选择最合适的解决方案。在实际应用中,第二种方法在计算阶乘末尾零的数量时更加高效和准确,因此它被广泛应用于各种数学计算中。

转载地址:http://cfeoz.baihongyu.com/

你可能感兴趣的文章
MySQL集群解决方案(4):负载均衡
查看>>
mysql颠覆实战笔记(八)--mysql的自定义异常处理怎么破
查看>>
MySQL高级-MySQL并发参数调整
查看>>
MySQL高级-视图
查看>>
MySQL:判断逗号分隔的字符串中是否包含某个字符串
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos配置中心集群原理及源码分析
查看>>
nacos配置自动刷新源码解析
查看>>
Nacos集群搭建
查看>>
nacos集群搭建
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(2):环境搭建
查看>>
Neo私链
查看>>
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>